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Circadian oscillators in eukaryotes
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The biological clock, present in nearly all eukaryotes, has evolved such that
organisms can adapt to our planet’s rotation in order to anticipate the coming day or
night as well as unfavorable seasons. As all modern high-precision chronometers,
the biological clock uses oscillation as a timekeeping element. In this review, we
describe briefly the discovery, historical development, and general properties of
circadian oscillators. The issue of temperature compensation (TC) is discussed, and
our present understanding of the underlying genetic and biochemical mechanisms
in circadian oscillators are described with special emphasis on Neurospora crassa,
mammals, and plants.  2010 John Wiley & Sons, Inc. WIREs Syst Biol Med

Androsthenes from Thasus, a member of an
expedition sent out by Alexander the Great,

made first systematic observations on diurnal rhythms
in plants. Although his original report is lost,
fragments described that during his journey he
observed astonishing leaf rhythms in Tamarindus
indica, which suggested to him that these trees were
sleeping during the night.1,2 The first modern report
that leaf rhythms are endogenously generated date
back to de Mairan, an astronomer, who showed
that leaf rhythms in Mimosa plants continued even
in the absence of an external light/dark cycle.3 de
Mairan’s studies were quickly followed-up, as for
example by the physician Zinn on ‘plant sleep’,4 and
by Linnaeus’ famous ‘flower clock’ described in his
Philosophia Botanica.5 In the beginning of the 19th
century, the pharmacist Julien-Joseph Virey found that
human mortality shows daily and seasonal variations.
Virey also reported on the effect of drugs with respect
to their administration times, and appears therefore
to have been the first person to work in the field that
now is called ‘chronopharmacology’.6

However, the endogenous character of plant leaf
movements was not universally accepted. Wilhelm
Pfeffer, while trying to demonstrate that leaf move-
ments in bean plants were caused by environmental
influences, showed by well-designed experiments that
these oscillations indeed have an endogenous cause.7
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During the same period, similar findings were made
by Szymanski8 on animals.

In the 1930s, Erwin Bünning suggested that
intracellular time measurement leads to seasonal
adaptations, such as flower induction, migration,
and hibernation, which are based on an oscillatory
and genetically determined physiological clock with a
period of approximately one day. Although Bünning’s
hypothesis first caused major opposition, it became
generally accepted during the 1950s.9,10 His textbook
‘The Physiological Clock’10 still makes an interesting
introduction to the field.

Today, the name circadian indicates that under
free-running conditions the period length of these
physiological oscillators is circa one day (derived from
lat. dies, day and circa about) after a suggestion
by Franz Halberg. Additional defining properties
of circadian oscillators are: (1) being endogenously
generated; (2) showing a free-running rhythm; (3) can
be phase-shifted by environmental perturbations,
e.g., by light, temperature, chemicals; (4) they show
entrainment, i.e., circadian oscillators can track
rhythmic environmental changes; and (5) showing
temperature compensation (TC), meaning that the
free-running period is (approximately) the same at
different but constant temperatures.

Circadian rhythms are important for the daily
and seasonal adaptations of practically all higher
(eukaryotic) organisms, but are also found in light-
sensing prokaryotes such as cyanobacteria.11 How-
ever, adaptation of organisms to their environments
involves not only circadian oscillations but also ultra-
dian as well as infradian oscillators.10,12–16

In this review, we give a brief description
of eukaryotic circadian oscillators with special
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emphasis on the model organisms Neurospora crassa,
Arabidopsis thaliana, and the mammalian clock.
Drosophila, while a major model system, is left out
here because of space limitations.

GENETICS AND MODEL ORGANISMS

In the beginning of the 1970s,17 the first success-
fully generated clock mutants were generated with
the fruit fly Drosophila melanogaster18 and the fil-
amentous fungus N. crassa,19 and rats were found
to lose their circadian rhythms by hypothalamic or
suprachiasmatic lesions.20,21 Remarkably, in 1990
Ralph et al. could restore circadian wheel-running
activities in Syrian hamsters that had their suprachias-
matic nucleus (SCN) removed, by transplanting back
intact SCN tissue,22 indicating that the mammalian
circadian clock is located in the SCN.23

Early genetic and molecular biology studies on
Drosophila24 and Neurospora25 indicated a common
mechanism involving a transcriptional–translational
negative feedback loop (Figure 1),26–30 but newer
findings suggest the presence of multiple loops and
oscillators.31–36

CIRCADIAN OSCILLATORS ARE BASED
ON FEEDBACK MECHANISMS

The study of biological clocks had always a good share
of theoretical studies and modeling approaches.41–43

Kinetic models of transcriptional–translational neg-
ative feedback loops, some based on Goodwin’s
equations,37,44 showed that many aspects of cir-
cadian oscillations including TC and phase reset-
ting can be described.38,39,42,45–60 Early predictions
using the Goodwin oscillator indicated38,61 that clock
protein stability/turnover should determine the cir-
cadian period length, where short-period mutants
should have a clock protein that is more rapidly
turned over compared with wild type, whereas
in long-period mutants the clock protein should
be more stable than in wild type. Using Neu-
rospora, it was demonstrated that phosphoryla-
tion of the clock protein FREQUENCY (FRQ)
is important for its stability.62–65 When certain
phosphorylation sites in FRQ were blocked (i.e.,
replacing Ser 314 by an Ile),63 FRQ stability
increases and leads, as theoretically predicted,38,61

to larger period lengths. In several follow-up
papers by the Liu group,66–68 it was found that
phosphorylated FRQ is turned over by the ubiquitin–
proteasome pathway.69 The study of FRQ-decay
kinetics in Neurospora clock mutants confirmed the

theoretically predicted period–stability relationship
with an intimate link to TC.54,65 Thus, Neurospora’s
circadian period appears to be a fine-tuned process,
including phosphorylation/dephosphorylation reac-
tions of FRQ by several kinases and phosphatases,
leading to a regulated turnover through the ubiquitin–
proteasome pathway.27,28,40,70–72 Similar observa-
tions have also been made for mammalian systems
showing that the decreased period for the CK1ε tau
mutation in mice and Syrian hamsters is related to
an increased degradation in PER-protein.73,74 Certain
posttranslational regulation elements of clock proteins
appear to be conserved from Neurospora to mammals
and involve the casein kinases (CK1 and CK2) and
the phosphatase PP2A.40

Positive feedback loops (Figure 1) have also
been identified as part of circadian clock mechanism,
as for example in Drosophila.35,75–78 Some models
showed that the presence of interlocked positive and
negative feedback loops may increase the stability
and tunability of the oscillator,79 whereas in other
cases80,81 the presence of an additional positive
feedback did not seem to affect the robustness of the
oscillator. In the case of the Drosophila oscillator,
which at present includes two negative and one
positive feedback loops, the positive loop is necessary
to describe the influence of dosage of the per- and
vri-genes on the period.75,82–84

There is a close similarity from a mechanistic/
kinetic viewpoint between circadian rhythms and in
vitro physicochemical oscillators,85–96 as both have
positive and negative feedback loops.97 Today, the
mechanisms of many physicochemical oscillators have
been determined, including systems that can even
show TC.93,98,99

THE ISSUE OF TEMPERATURE
COMPENSATION
Temperature compensation is one of the defining
clock properties of circadian rhythms. TC means
that the circadian period is homeostatically regulated
toward variations in temperature, i.e., the circadian
period is constant at different (constant) temperatures.
TC is only operative within a certain organism-
important temperature range. For most of the
circadian oscillators the precise mechanism of how TC
is achieved is still not known. A variety of suggestions
how TC may be achieved have been considered during
the years.42,52

In the ‘balancing/opposing reaction approach’,
first suggested in 1957,100 and later kinetically for-
mulated for chemical oscillators,55 each temperature-
induced change in a rate constant of a reaction step
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FIGURE 1 | Schematic representation of a molecular mechanism for circadian oscillations with negative and positive feedback loops. Positive
components/transcription factors interact with the promoter regions of clock genes leading to their expression and forming corresponding mRNAs
and proteins. Some clock gene activation mechanisms may involve positive feedback loops. As supported by model calculations,37–39 the crucial
element for getting oscillations is the presence of one (or several) negative feedback loop(s), in which a clock protein inhibits its own transcription.
Environmental influences affect the clock mechanism through a series of receptors, which alter the properties of clock proteins and their transcription
factors through kinases and phosphatases, where some of phosphorylation and dephosphorylation pathways appear to be mechanistically
conserved.40

will in principle lead to an increase or decrease in the
period length. For certain combinations of activation
energies, the positive and negative influences of the
various rate constants on the period length cancel and
the system will show TC within a given temperature
range. To achieve TC, the activation energies need to
be fine-tuned in such a way that the sum of the prod-
uct between the sensitivities and the activation energies
becomes zero.52,101,102 This approach allows one to
describe TC of any systemic property that depends on
the rate constants, such as for nonoscillatory steady-
state fluxes or steady-state concentrations,51 and has
been extended to describe pH compensation.103,104

Several experimental findings suggest (see below) that
‘balancing’ is at least one mechanism to achieve TC in
circadian rhythms.

Hong et al.105 recently argued that a balancing
approach would not be sufficiently robust to account
for the many mutations which do not affect TC.
They propose a switch-like mechanism for circadian
rhythms that concentrates period sensitivity in just
two parameters, by forcing the system to alternate
between a stable steady-state cycle and a stable limit

cycle. Indeed, there appears to be a close relationship
between robust homeostasis and TC,106 but such a
relationship for circadian oscillators is still poorly
understood.

Despite TC, temperature has a significant
influence on other circadian properties such as
entrainment, phase shifting, or amplitude.56

THE NEUROSPORA CIRCADIAN
CLOCK

The FRQ-Oscillator
Neurospora crassa is a model organism107 that
has been extensively used in the study of circa-
dian rhythms.27,28,40,70,108–111 In 1959, Pittendrigh112

found that Neurospora shows a circadian rhythm in
its asexual production of spores (conidia). The use
of the band (bd) mutation introduced later by Sar-
gent and coworkers28,107 allowed monitoring of the
free-running temperature compensated conidiation
rhythm in growth tubes (Figure 2). A firefly luciferase-
based reporter assay was first constructed by Morgan
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FIGURE 2 | Growth tubes monitoring the free-running circadian
rhythm in Neurospora. The sterile tubes contain growth medium (agar)
and are sealed on each side with cotton plugs allowing air exchange.
Inoculation with mycelium or conidia occurs at one side of the tube.
Under free-running conditions, generally in darkness or in a red safety
light, the mycelium then grows along the tube with approximately
constant speed.116 Approximately every 22 h conidia are formed shown
as the patches on the tube, reflecting the output of the circadian clock.
The period of the free-running rhythm can be determined by measuring
the distance between the conidial patches and dividing this distance by
the growth speed.

et al.,113 where the sequence of the luciferase gene
was partly optimized to reflect the codon usage by
N. crassa. Both light-induced and circadian activities
could be continuously monitored using this assay. A
fully codon-optimized system was recently generated
by Gooch et al.,114 which showed a dramatic increase
in the light output of the luciferase-catalyzed reaction,
and which has also been applied to study the output
dynamics under conditions of choline deficiency115

(see Section on FRQ-Independent Oscillators).
The basic mechanism behind the conidiation

rhythm is a transcriptional–translational negative
feedback loop, where the FRQ-protein inhibits its
own transcription (FRQ-oscillator, Figure 3). WHITE
COLLAR-1 (WC-1) and WHITE COLLAR-2 (WC-2)
are Zn-finger proteins acting as a heterodimeric tran-
scription factor, the so-called White Collar Complex
(WCC). The WCC plays central roles in a variety of
different physiological processes, including (blue) light
activation of genes,107,117–125 with WC-1 as a flavin-
binding blue-light photoreceptor. The frq promoter
contains two light responsive elements (LREs), where
the distral element (‘clock (C)-box’)126 appears neces-
sary for rhythmicity in darkness. Each LRE contains
two GATN sequence repeats, each probably capable
of binding the Zn-finger domain from either WC-1 or
WC-2. In darkness, circadian rhythms are observed

in frq-mRNA, FRQ-protein, as well as in WC-1.127

Hong et al.128 showed by model calculations that the
binding of WCC to the frq-promoter is of importance
for maintaining TC. Alternative to a rapid degra-
dation of the complex between FRQ and WCC, in
order to close the negative feedback loop, there is
evidence for a FRQ-mediated clearance of WC-1 out
of the nucleus.129 Recent experimental evidence sug-
gests that FRQ is rapidly shuttled between the nucleus
and the cytoplasma,130 which may be part of a FRQ-
mediated mechanism to clear WC-1 out of the nucleus.

Although WC-1 has been considered to be
always bound to WC-2, which has been found to
be in excess compared to WC-1 and at constant
concentrations,121,131,132 recent ChIP experiments
indicate differential binding affinities of WC-1, WC-
2 toward the LREs and a breakup of the WCC.133

It was found that WC-1 is always bound to both
LREs, whereas binding of WC-2 in darkness to the
C-box is oscillatory (circadian) and highly correlated
with the binding of the chromatin-remodeling enzyme
CLOCKSWITCH (CSW-1) to the C-box.133

As a result of a temperature-regulated alternative
splicing mechanism, the FRQ-protein is found in a
long form (l-FRQ) and a short form (s-FRQ). When
individually expressed, each form shows temperature
compensated oscillations, but together they extend the
temperature range for which TC is observed.134–136

A recent kinetic model by Akman et al.137 describes
the temperature-induced two FRQ isoforms and the
associated TC not only for the bd mutant but also for
frq1, frq7, and frqS513I mutants.

As already mentioned, the expressed FRQ-
protein (i.e., both s- and l-forms) is posttranslationally
modified by a variety of kinases as well as
phosphatases leading to a fine-tuned stability of the
protein, which regulates the period of Neurospora’s
circadian rhythm.64 CK2 has been found to be a key
regulator of TC in Neurospora.94 The chrono and
period-3 mutations have been found to be within the
β1- and α-subunits of CK2. Reducing the dose of
these subunits significantly alters TC indicating that
TC is due to a balancing of positive and negative
contributions to the period.138

Besides regulating FRQ-protein stability by
proteasomal degradation,68 there is now evidence that
frq-mRNA is regulated by the exosome and defines
an additional posttranscriptional negative feedback
loop.139

FRQ dimerizes by a coiled-coil domain, which
is important for maintaining circadian rhythmicity.140

FRQ also binds to a ‘FRQ-interacting RNA helicase’,
FRH.141 Downregulation of FRH using RNA interfer-
ence has been found to lead to increased frq-mRNA
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FIGURE 3 | Scheme of the circadian
core network in Neurospora crassa.
Several negative feedback loops have
been identified. The FREQUENCY (FRQ)
protein plays a central role. Its highly
regulated stability defines period
length and TC of the conidiation
rhythm.64,65 Additional feedback loops
are also indicated. They seem to serve
special purposes, i.e., when nitrate ion
is the only source for nitrogen, or, as in
the case of VIVID (VVD), playing a role
in the phasing of the rhythm.
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levels indicating that FRH is important in the negative
loop of Neurospora’s clock mechanism.72

When transferring cultures from darkness to
continuous light conditions, the circadian rhythm is
abolished, frq-mRNA and FRQ-protein levels reach a
steady state (after partial adaptation responses) and
growth tubes show constant conidiation.121,142,143

The light resetting behavior of the Neurospora clock,
which has been characterized by several groups, is
well described by a Goodwin oscillator using the
assumption that light overrides the inhibitory effect
of FRQ on its own transcription and increases
frq transcription.144 VIVID (VVD) is another light-
upregulated and light-responsive protein, which
contains a blue-light receptor.145–147 The role of
VVD is associated with the control of the phase
of Neuropsora’s circadian rhythm, its light resetting
and transient light response145,148–150 as well as
the TC of the circadian phase.151 In the vvdKO,
the phosphorylation pattern of FRQ is altered.
At DD4, more of the lower-phosphorylated forms
are seen in vvdKO, whereas in the wild-type
strain FRQ is hyperphosphorylated151 indicating that
VVD somehow interacts with FRQ and/or FRQ-
phosphorylating or dephosphorylating processes.
Schneider et al.152 have recently found that a
vvd mutant strain can show rhythmic conidiation
under constant light (LL) conditions. The period
of this strain ranges between 6 and 21 h in LL
dependent upon the light intensity, the carbon

source in the medium, and the presence of other
mutations. The rhythms in LL require the wc-1 genes
but not the frq gene, and FRQ does not show
oscillations. Schneider et al.,152 therefore concluded
that the conidiation rhythm observed in LL in the
vvd strain is driven by an oscillator independent
of FRQ.

FRQ-Independent Oscillators
Surprisingly, certain circadian or noncircadian oscilla-
tions do not seem to require a functional FRQ protein.
They are often referred to as ‘FRQ-less oscillators’
(FLOs).153,154 The first strain containing a FLO, frq9,
was characterized by Loros et al.155 In this strain, a
complete loss in TC in its conidiation rhythm was
observed. This strain produces a short nonfunctional
form of FRQ and the observed phenotype, showing
noncircadian banding appearing after a certain induc-
tion time, was confirmed using a true frq-knockout
strain (frq10).156

Several FLOs have now been identified, and
alternative hypotheses for the ‘circadian pacemaker’
in Neurospora have been put forward.152,153,157–161

Many of these FLOs lack one or more of the defining
properties of circadian rhythms and are therefore
noncircadian.31 There is presently a disagreement
whether some of the FLOs can be entrained by
temperature cycles.162–164
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de Paula et al.31,32 recently found a FLO, which
shows circadian (i.e., temperature compensated)
oscillations in the activity of the clock-controlled gene
16 (ccg-16) both in darkness and under continuous
light conditions. The oscillator requires WC-1 and
WC-2 and there is the possibility that this WC-FLO is
involved in the generation of WC-1 rhythms.

When nitrate ion is the only nitrogen source,
the nitrate assimilation pathway is turned on showing
oscillations in nitrate reductase (NR) activity with
a period length of approximately 24 h.33 These
oscillations do not require a functional FRQ,
but do require WC-1, and are observed both in
darkness and under continuous light conditions.
The ‘nitrate FLO’ contains a negative feedback
loop, where the downstream product of NR, the
NITROGEN METABOLITE REGULATOR (NMR)
protein inhibits the transcription of nit-3 (the
structural gene of NR) by binding to its transcription
factor NIT-2.165,166 The existence of such a nitrogen
oscillator allows efficient nitrogen uptake at the phase
when physiological activity is high.

THE MAMMALIAN CIRCADIAN
CLOCK

The Master Clock
Today, the SCN is recognized to act not only as a
central clock but also as a synchronizer of circadian
rhythmicity in other tissues.14 It is now generally
accepted that the retina measures the light intensity
through a nonimage photoreception and transmits
this signal to the SCN. This is mediated by the
pigment melanopsin,167 which is accepted as a major
component in the synchronization of circadian clocks.

The SCN has efferents to peripheral tissues,
which constitute a part of the sympathetic outflow
from the brain to the kidneys, bladder, spleen, adrenal,
and thyroid glands, as well as to white and brown
adipose tissues. The SCN is also involved in the
parasympathetic nervous system with innervation
of the liver, pancreas, thyroid, and submandibular
glands. Possibly, there is also a modulation of
the neuroendocrine systems as well.168 In addition,
secretion of melatonin from the pineal gland is
regulated through nerve pulses from SCN, whereby
the modulatory role of melatonin on the sleep/wake
rhythms, blood pressure, and other functions is
effected via the blood stream.12,14

It has also been found that transforming growth
factor alpha (TGF-α) functions as an output signal
from the mammalian clock in the SCN, mediated
through the EGF receptors on the neurons in the
hypothalamic subparaventricular zone in mice.169,170

The Cellular Clockwork
There is now increasing evidence that clock genes are
expressed in the oocyte and during early embryonic
development.171 The mammalian circadian clock
is a complex autoregulatory transcriptional and
translational feedback program, which is composed
of positive and negative regulators.172 Two basic
helix–loop–helix transcription factors, CLOCK and
BMAL1, form a heterodimer, which constitute the
positive elements and drive transcription of three
Period (Per) and two Cryptochrome (Cry) genes
(Figure 4). In the nucleus, the heterodimers bind to
E-box enhancer elements in the promoter regions
of the genes encoding Per1, Per2, Per3, Cry1, and
Cry2 and enhance transcription.173 In intact animals,
transcription of Per1 starts before dawn and has
a peak in Per1-mRNA about 6 h later. The levels
then rapidly subside before the end of the day. The
resulting peak of the PER1 protein comes 6 h after its
mRNA. Per3 transcripts accumulate at the beginning
of the day and subside after 4–6 h, whereas Per2
mRNA accumulation occurs later than the other two
genes and peaks at dusk. The transcripts of Cry1
and Cry2 reach a peak at 6–8 h after dawn and
thereafter decline. In contrast to the transcripts, all
the resulting proteins oscillate with the same phasing
and reach maximum levels at dusk. The PER and CRY
proteins are bound and phosphorylated by a casein
kinase 1 epsilon/delta (CK1ε/δ). It has been found
that phosphorylation by CK1ε/δ is temperature-
insensitive and period-determining,174 probably by
an ‘instantaneous’52 TC mechanism of the enzyme. In
addition, PER and CRY proteins translocate to the
nucleus and act as negative regulators, both of their
own transcription and by directly interacting with the
CLOCK–BMAL1 heterodimer. Their transcription is
therefore inhibited during the night.172 It has recently
been found that CLOCK possesses intrinsic histone
acetyltransferase activity in mouse liver cells, which
contributes to chromatin-remodeling events related
to circadian control of gene expression. In addition,
CLOCK mediates acetylation of BMAL1, which serves
as another regulatory element in the clock. Thereby,
BMAL1 undergoes rhythmic acetylation in the liver,
where the timing parallels the downregulation of
circadian transcription in clock-controlled genes.175

At least two other proteins may modulate
PER1 activity in mammalian cells by regulating
the circadian periodicity.176 In addition, Rev-erb-α
modulates the clock by prolonging the periodicity and
also coordinating metabolic pathways.177 Light then
resets the master clock in the SCN, where the pigment
melanopsin plays a central role.167 However, the effect
depends on the time when it acts, causing both phase
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FIGURE 4 | Model of the circadian core network in mammals. The heterodimer CLOCK/BMAL activates genes containing an E-box. CRY, the PER
proteins, and REV-ERBα are negative elements, whereas the ROR proteins together with CLOCK and BMAL1 define positive elements. For a more
detailed discussion, see main text.

shift and modulation of the circadian phase.167,178

In addition, at least two different types of mRNA
exist that are interacting with the CLOCK–BMAL1
complex, whereby the circadian period is lengthened
and the entrainment of the master clock by light is
attenuated.177

Peripheral Clocks
The cloning and characterization of mammalian
clock genes have revealed that they are generally
expressed in a circadian manner in almost all organs
of the body.179 For nearly 30 years, it has been
known that the rate of cell proliferation undergoes
substantial circadian variations, where the phasing
differs from tissue to tissue. It has been shown
that the molecular circadian clock exerts a direct
control on the cell-division cycle in proliferating
tissues by modulating the activity of cyclins and
cyclin-dependent kinases.180 Still, it is not clear what
causes the phase delay in some tissues. On the
other hand, the rhythms of body temperature in
rodents can sustain peripheral circadian clocks, being
an indirect mechanism for phase synchronization.181

Peripheral clocks also appear to be important
for the regulation of cardiovascular and metabolic
functions.182

Since 1980s numerous reports have described
cyclic variations in different parts of hemopoiesis,

both in the maturing compartments of the bone
marrow and in the relative numbers of different
types of leukocytes in peripheral blood.183–188 It has
been postulated that the whole immune system is
both exogenously regulated and controlled by the
endogenous clock from SCN.189 In particular, BMAL1
seems to be important for the development of β-
cells along a circadian time scale.190 In line with
this, it has recently been reported that the circadian
expression of monocyte chemoattractant protein-1
(MCP-1/JE), which is important for the phagocytic
functions in macrophages, is directly controlled by
BMAL1.191

Stem Cells
Several years ago, it was shown that the clonability
of murine progenitor cells underwent circadian varia-
tions when cultured in semisolid medium.192–195 These
variations were synchronous with the proliferative
activity of the bone marrow, indicating a general sys-
temic regulation of hemopoiesis. Later, it was shown
that the different clock genes were not only expressed
in hemopoietic stem cells in mice196 but also appeared
to be developmentally regulated.197 Subsequent sam-
pling of human stem and progenitor cells (CD34+)
from the bone marrow showed a different pat-
tern, both with regard to phasing and amplitude.198

Maximum mRNA level for Per1, Per2, and Cry2
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was found during the morning, whereas Rev-erb α,
Bmal1, and Clock did not show significant circadian
variations.

Recently, it has been found that hemopoietic cell
trafficking is due to regulated adhesion and attraction
to the bone marrow microenvironment.199 In line with
this, it was reported that hemopoietic stem cell release
in mice is regulated through circadian oscillations,
peaking at 5 h after the initiation of light, and reaching
a nadir at 5 h after darkness.200

Cultured human mesenchymal stem cells from
the bone marrow can show circadian rhythms
using serum shock201–203 and cAMP analogs. The
phosphorylation status of both PER1 and GSK3β was
essential for getting circadian rhythms.204 Since such
stem cells are essential for normal hemopoiesis to take
place in vivo, this appears to be a promising model for
studying molecular networks related to the circadian
clocks.

Cell-Culture Studies
During the last decade, circadian oscillations have also
been observed in mammalian cells from peripheral
tissues, and mainly in murine and rat fibroblasts205

It was shown that serum shock induced the
circadian expression of various clock genes both
in fibroblasts and in hepatoma cells from rats.203

Later, it was shown that cAMP, protein kinase C,
glucocorticoid hormones, and Ca2+ had the same
effect.201 Surprisingly, it was found that multiple
signaling pathways in the cells could elicit circadian
gene expression.202

Importantly, the induction of circadian rhythms
in clock gene expression in fibroblasts in vitro did
not have any relation to the proliferative activity in
general.

It has been found that the cycling of cryp-
tochromes appear not necessary for circadian clock
functions in mouse fibroblasts,206 challenging the view
of a transcriptional–translational feedback loop in
which the cycling of the CRY1 and CRY2 is thought to
be necessary (Figure 4). Hence, there may be a certain
redundancy in the factors participating in circadian
cycling, or there are individual differences between
various differentiated cell types.207

THE PLANT CIRCADIAN CLOCK

Background
Circadian components in important processes as flow-
ering and other day length-dependent physiological
phenomena were early recognized.208 Circadian

rhythms in CO2 exchange,209,210 enzyme activities,
and transcript levels were since reported.10,211,212

Recently, circadian rhythms in chromatin structure
were observed in plants.213

One of the most extensively studied gene families
in plants, the CAB genes (CHLOROPHYLL A/B-
BINDING PROTEIN), was shown to be expressed
in a circadian manner, and also to be induced by
light in many different plants including the model
plant Arabidopsis.214–217 These genes are encoded
in the nucleus, translated in the cytosol, and then
the proteins are imported into the chloroplasts to
become components of the photosynthesis apparatus.
Based on the properties of the CAB promoter, a
pioneering method for picking clock mutants was
developed.218 A fragment of the CAB promoter, which
was essential for light and circadian expression, was
coupled to a luciferase reporter gene, and transformed
into Arabidopsis. These transgenic Arabidopsis lines
were then used to select for mutants in CAB rhythms
recorded by fluorescence. A short-period mutant,
toc1 (timing of cab 1), was identified and further
characterized. In toc1 plants, the fluorescence rhythm
linked to the CAB promoter was shortened to 20.9 h,
whereas control plants showed a period length of
24.7 h. The rhythm in leaf movement also showed a
shorter period (23.3 h) in the toc1 mutant, compared
with control plants (25.2 h). The TOC1 gene was later
cloned, and identified219 as a gene encoding a PPR
protein (pseudoresponse regulator protein). TOC1 (or
PPR1) is member of a small gene family in plants,
comprising PPR1, PPR3, PPR5, PPR7, and PPR9
with partly overlapping functions. These proteins
are reminiscent of the prokaryotic two-component
kinases. They have a receiver domain containing
a histidine, but the phospho-accepting aspartate
residue present in prokaryotic two-component kinases
is absent, suggesting that they do not function
as the usual phospho-transfer proteins.220 Further
investigations showed that all the five PPR genes were
important for the clock functions.221,222

TOC1, LHY, and CCA1 Are Essential
Elements in a Plant Clock Mechanism
It is now well established that expression of TOC1
is influenced by a feedback loop comprising two
closely related MYB factors CIRCADIAN CLOCK
ASSOCIATED 1 (CCA1) and LATE ELONGATED
HYPOCOTYL (LHY) in addition to TOC1 itself.223

In this loop, TOC1 acts as a positive regulator of
CCA1 and LHY expression, whereas CCA1 and
LHY act to inhibit TOC1 expression. CCA1 and
LHY bind to the promoter of TOC1, and thereby
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FIGURE 5 | Feedback loops of the plant
circadian network. Three loops are presently
considered, the dawn-phased CCA1/LHY
containing loop, which negatively regulates
TOC1, a morning-phased loop containing the
PRR proteins inhibiting the formation of
CCA1/LHY, and an evening-phased loop,
probably through GIGANTEA (GI) activating
TOC1.
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repress transcription of TOC1. The mechanism by
which TOC1 promotes expression of CCA1 and
LHY is not clear, but probably involves another
protein, PHYTOCHROME INTERACTING FAC-
TOR (PIF3).224,225 The mutual influence of TOC1
and CCA1/LHY has been well established through
mutants, double mutants, and overexpressors. The
results all support a regulatory model consistent with
the positive and negative components of a feedback
loop (Figure 5).213,221,226,227 However, TOC1 alone
cannot induce the expression of CCA1 and LHY.
Other genes are also necessary, i.e., GI, ELF4, and
LUX. The number of genes known to be related to
the TOC-CCA1/LHY feedback loop is increasing,
and a list of 20 genes was presented in a recent review
by McClung.221

Cryptochromes are the only conserved genes
that appear to be commonly involved in eukaryotic
clocks, i.e., in Drosophila, mammals, and plants.228

In plants, cryptochromes among other photoreceptors,
are important for light-input to the clock. However,
as for mammals, the cryptochromes are not essential
for the plant core clock mechanism because in
the cry1 cry2 double knockout CAB expression
was still circadian, although the period length was
extended.229

Changes in chromatin structure are another
emerging common feature of eukaryotic clocks.
Recently, circadian chromatin changes were also
found in plants. Chromatin immunoprecipitation
(ChiP) assays were performed with an antiacetylated
histones 3 antibody (αACH3), and subsequent
polymerase chain reaction (PCR) analysis of the
TOC1 promoter.230 The results showed that histones
bound to the TOC1 promoter were acetylated

in a circadian manner. The facilitates chromatin
transcription (FACT) complex was also found to bind
to the TOC1 promoter in a circadian manner, further
confirming the chromatin remodeling in parallel with
TOC1 expression.230

Recently, it has also been shown for Arabidopsis
that phosphorylation and degradation of the TOC1
protein is important for clock function.222

The balancing hypothesis for TC (see above) is
supported by experiments showing that TC is achieved
because of a dynamic balance between the genes GI
and LHY.231 These findings have also been confirmed
by numerical simulations using an interlocking-loop
model232,233 showing that balancing LHY against GI
and other evening-expressed genes can largely account
for TC in wild-type plants and for the temperature-
specific phenotypes of GI mutants.

CONCLUSION

Circadian oscillators have evolved to adapt organisms
to our planet’s day/night cycles and to anticipate
and meet unfavorable seasons. The core circadian
oscillators are based on transcriptional–translational
negative feedback loops and we are starting to under-
stand and model the behaviors of the main molecular
players within these oscillators and environmental
influences. While transcriptional–translational nega-
tive feedback loops together with certain kinases and
phosphatases appear to be conserved control struc-
tures among different organisms, the clock proteins
are much more diverse and appear to have evolved
independently.
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selbstständige naturwissenschaftliche Forschung in
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